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ABSTRACT

The contact problem associated with a bolt bearing on a circular fric-
tionless hole in a rectangular orthotropic plate has been examined. The
problem has been formulated by the well-known methods of Muskhelishvili and
Lekhnitskii using functions of complex variables. The orthotropic stress
functions are expanded in Laurent series and boundary conditions satisfied
by boundary collocation. A simple iterative process has been utilized with
success to find the contact angle. The process utilizes the physical fact
that the radial stress in the contact region is compressive and reduces to
zero in a well-behaved manner at the point where the bolt begins to sepa-
rate from the plate. The problem was motivated by the growing need in
composite designs to gain analytical understanding of the joint. Some
interesting results concerning the stress concentrations occurring in
plates with various geometries and material parameters are presented. The
results show the importance of complex interactions and the necessity of
employing the particular method to estimate stress concentrations in prob-
lems of this nature.
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NOMENCLATURE

Effective compliance coefficients of orthotropic laminates
Fastener diameter

Young's moduli of individual layers of laminate along
material axes

Edge distance, pin center to free edge lying in the
direction of applied load

Shear moduli of individual layers of laminate referred to
material axis system

K
S0

)max/Tso’ KB = cB)max

9x)g90/Ns’ al /g

Stress concentration factors for net section, shearout, an
bearing stresses

cx)QO/OA’ Kso = Txy

P

max

GA’ KB =g OA

Ratios of peak net section, shearout, and bearing stresses
to applied tension in laminate

B)max/

Pin load

Coefficients relating displacement to Airy stress function
Pin radius

Radial distance from center of pin

"Side" distance, i.e., lateral distance from pin to free
edge (single pin case) or symmetry line (multipin case) in
direction normal to load

Coefficients in expressions for complex characteristics, z
Laminate thickness

Airy stress function

Complex components of Airy stress function

Displacements in rectangular coordinate system

Rectangular coordinates

Complex characteristics of partial differential equation
expressing compatibility in terms of U

Real and imaginary parts.of 51

Coefficients in Laurent series expansion for ¢, and ¢,
Conformal mapping functions with arguments Sk
Angle of contact at fastener-hole boundary
Angular polar coordinate

Uniform tension applied to loaded edge of plate

Mean bearing stress

Mean net section stress

Peak bearing stress (i.e., peak compression) at hole

Axial stress at & = 90°, r = R, usually equal to peak net
section tension

Mean shearout stress

Maximum shear stress along hole (r = R, usually equivalent
to maximum shear stress in the laminate)

Inverse mapping function describing z, as a function of Sy

k
Poisson's ratio

d

k



INTRODUCTION

With the advent of modern composites it has become important to have analyt-
ical solutions which can describe the elastic behavior of practical types of
composite structures under load. As composites are orthotropic in behavior, an
anisotropic formulation becomes imperative. Earlier works done for isotropic
materials for a single bolt in an infinite plate by Bickleyl and extensions of
his analysis to treat finite boundaries.?™™ The present paper treats a mixed-
boundary value problem connected with the rigid bolt in a finite rectangular plate
using the Lekhn1tsk11 complex variable approach.3 For plane problems of orthotropy,
Lekhnitskii® has developed a solution in terms of analytic functions of complex
variable theory along the lines of the well-known techniques of Muskhelishvili.®

The problem considered here is the problem of a rigid bolt in a finite rect-
angular sheet. The load is imposed by the bolt and its effect is represented as
a known displacement on the hole of the same diameter as the bolt. The plate is
kept in equilibrium by a uniform stress on one edge of the plate. Two types of
boundary conditions have been considered at the lateral outer boundaries, one
corresponding to a single bolt in a rectangular sheet and the other to a series
of bolts equally spaced in a direction normal to the direction of the applied
load. The boundary conditions are satisfied by a collocation method used by the
author in Reference 7.

.

FORMULATION

Standard elements of a mechanical fastening system are shown in Figure 1.
The essential part is an orthotropic plate with a circular cutout to accommodate
a rigid circular bolt of the same radius. Force is applied to the plate by a
translation displacement applied to the bolt, which causes a deformation on the
circular hole whose pattern is known. A frictionless contact has been assumed.
The plate is kept in equilibrium by a uniform tensile stress o5 applied on the
left edge of the plate in Figure 1. In practice such plates are fabricated of
several layers, each having orthotropic properties and varying angles of incli-
nation. The axis of symmetry in this particular problem is the x-axis.

In Figure 1 two types of joint configurations have been shown, a single pin

and a periodic array of pins. Figure lc shows an isolated pin well removed from
the boundaries where an infinite plate solution will apply.*

*OPLINGER, D. W., and GANDHI, K. R. Analytical Failure Studies in Mechanically Fastened Composite Plates. Unpublished research.

—

BICKLEY, W. G. Transaction of Royal Socicty of London, v. 227A, 1928, p. 282.
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Figure 1. Mechanical joint configurations under consideration.

The problem has been treated as a plane problem ignoring the effect of out-
of-plane and shear deformations. Mathematically, the problem has been formulated
using the functions of complex variables. Adopting the conventional notation,
the material properties can be described by the elastic constants E;, Es, vjo,
Voy, and Gyp. By symmetry of the constitutive matrix, vi2/E; = v,1/Es.

The formulation of the analysis will now be briefly summarized. The Airy

stress function for two-dimensional problems of rectilinear anisotropy can be
written ‘as

U(x,y) = Re Uj{(zy) + Uy(zy)}, (1)

where U; and U, are analytic functions of the complex variables zj; and z,. The
variables z; and z, correspond to

] =2 X FIELy

Zp = X + SoY, (2)

where s; and ss are the complex roots of the characteristic equation
apiut - 2a1eu® + (2a1p + agg) Z - 2aeu + agy = 0. (3)

Equation 3 defines the condition required for the Airy function U to satisfy the
two-dimensional compatibility equation.

In Equation 3 the aj;; are the compliance coefficients occurring in the generalized

Hooke's Law. Assumifg unequal roots in Equation 3, we have

1 P |
S1 =M1 =y + 1
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55 = 8§y Sy = 85, 4)

U
wbere s and Bj are real constants. Without loss of generality we assume that
B1 > 0 and B, > O.

To simplify notation the new functions introduced are:
¢1 (z1) = dUy/dzy, ¢ (zp) = dU,/dz,. (5)

Then, from the definition of the Airy stress function, the stresses can be
written as

ox = 2Re {s361(z1) + s3¢3(z,)}

oy = 2Re {$1(z1) + ¢2(22)}

Txy = -2Re {5181(21) + s2¢2(z2)}, (6)

where, henceforth, primes will be used to denote differentiation with respect to
the indicated arguments.

Another useful relation is the following expression for the force resultant
as a function of arc length on an arbitrary curve:

(1+is) o1 (z1) + (L+isp)dp(za) + (1+i81)¢1(z1) + (1+152)¢2(z2)
S ifs(Xn+iYn)ds = f1(s) + if,(s). )

The displacements are expressed as

[
n

2Re[p141+p292]

<
n

2Re[q191+9292],
with Py and 9 (k=1,2) given by
Bhe = a115k2 * 81273165y

S = a115k2 + azz/sk-aze- (8)

METHOD OF ANALYSIS

We now need to determine ¢;{z;) and ¢2(z,) so as to satisfy the stress and
displacement boundary conditions. Since the circular boundary is transformed to
an elliptical shape in the z; and z, planes, the first step consists of finding a
simple mapping function which maps elliptical contours in the zy plane on a unit
circle in the plane of an auxiliary parameter Zj(zy). The following accomplishes
this step:

2 = w(z) = (RO-is)/2)g, + R/2)(Avis) (1/g)) ©)

3



where R is the radius of the hole. The following are useful notations:

$1(z1) = ¢1[w(z1)] = ¢1(z1)

$2(z2) = ¢2[w(T2)] = ¢2(z2). (10)
Thus

$1(21) = ¢1(21)/w' (1)

$2(22) = $3(52)/w' (52). (11)

The transformed expression for the stresses can now be written as

o, = 2Re{(s%¢i(C1)/w'(C1)) + (s503(52)/w' (E2))} (12)
The resultant force, Equation 7, becomes
(1+is1)¢;(z1) + (L+isp)ea(gy) + (1+i51)41(21)
+ (1+152)95(22) = £1(s) + ifa(s). (13)
The boundary conditions involved in the analysis included specifications of
normal and tangential stresses at the rectangular outer boundary together with

mixed boundary conditions on the circular inner boundary. On the inner boundary
the conditions are:

=1 R, 0 S QS s Tro = 0 (frictionless case)
ns6 <7 OR =0
086 <n; up = § cosH.

The second and third of these conditions imply that the contact angle is identified
with n. With § taken to be the rigid body displacement of the pin, the radial
displacement up is given to a good approximation (neglecting higher order terms

in §/R) by 8 cos® in the contact region. The value of n is an unknown in the
problem and was determined by a method described later.

On the outer boundary the boundary conditions are:
WE€, 0 ySBy'ay = = 0
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xy = 0, (single pin oy = 0
0, (multipin) = constant.
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This implies that the loaded end of the plate is located at x = -L. The third
equation represents the assumption that the x-axis is a line of symmetry for the
problem. In the last equation the single pin case corresponds to a free boundary
at y = s, while in the multipin (i.e., periodic array) case y = s represents a
second line of symmetry. In the case of the contact angle, the value of v in the
latter situation is an unknown. More precisely, it is required that the constant
value of v at y = s be adjusted so that the mean value of o, along this boundary is
zero. In the approach used here, two trial values for v were assumed and the total
vertical force f,, on the boundary was calculated as part of the solution. Since f
is a linear function of v, a straight line relation was thereby established which
determined the value of v required to set f, (and therefore the mean o¢,) equal to
zero. In the infinite plate case, of course, the outer boundary condi%ions do not
enter. Correspondingly, the positive powers in the Laurent series, Equation 14,
are eliminated. Other simplifications which were used to advantage in the infinite
plate case are described in Equation 13.

The boundary condition equations contain the unknown stress functions ¢;(%;)
and ¢,(z5), which are the analytic functions of their arguments in a doubly con-
nected region. Since we are dealing with this type of region, a Laurent series of
the following form has been selected:

+o0 a n
¢1(21) = Ay log gy + X (o +iB )Ty

+oo . n
¢2(22) = Az log gp + X (v +i8 )zo.

A further simplification can be made knowing the symmetries in the elastic proper-
ties of composite materials. The following major kinds are considered here. Both
of them ensure that x-axis is the axis of symmetry:

' a. when the characteristic roots s; and s, are purely imaginary, i.e.,
a; = ap = 0; and

b. when the roots are related by the equation s = -s3.

The above symmetries are obtained depending upon the manner in which composite
materials are put together. Most of the composite designs would fall into one or
the other category. In the symmetry of type a it can be shown that under that
special condition, a, = yp = 0, while in the symmetry of type b, §, = -y, and B =
8. Further, the complex coefficients of the log terms A; and A; are determined by
imposing the single value condition on f; and f; and the displacements u and v.

As derived by Lekhnitskii,“ the following equations are relevant. The values of
Ay and A, depend entirely on the magnitude of the pin load P = 2sg,.

A + Ay - Al - Az =0

-P/27wi
0
Q1A + qpAp - qiA; - G2A2 = O
Now the problem simplifies to selecting the unknowns 0ns> Bns Yps and S, in Equation
14 so that the external boundary conditions are satisfied with sufficient accuracy

A least-squares collocation procedure’ was used and found satisfactory. It consists
of the following steps.

s1A1 + SpAp - S1A; - S5A
PlAl + P2A2 = ﬁlAl - ﬁzAz



1. Truncation of the infinite expansion in Equation 14 to a suitable finite
number of positive and negative powers.

2. Selection of points or stations around the external boundary in a fairly
uniform manner and writing force equations at each location. The number of such
equations was always arranged to provide more than twice the number of unknowns.

3. Solutions of unknowns in such a manner that the equations in step 2 are
satisfied in a least-squares sense.

ANGLE OF CONTACT

As in any contact problem, the determination of the region of contact is a
part of the solution. As the contact length depends on the load, the problem
strictly speaking is nonlinear. In our problem we employed a simple iterative
procedure which, within a few trials, succeeded in arriving at a close approxima-
tion to the true contact angle n starting with an assumed value close to 90°. The
method relies on the obvious physical fact that the radial stress o. in the contact
region is always compressive and approaches zero at the end of contact in a well-
behaved manner. Therefore, the procedure consists of starting with a value of n
denoted by nj, solving the problem, and examining the sign of o, at 6 = n;. If
the sign of o, is compressive, it can be concluded that the true value of n is
greater than the assumed value n;. In either case a solution is obtained with a
new trial value of n, say np. In all the cases tried, the two trial values, nj
and ny, were sufficient to give a relatively accurate estimate of the true value
of n. This approach amounts to a procedure similar to the Newton Raphson method
for nonlinear algebraic equations. In the region close to the true value of n,
the assumed contact angle plotted against o, at 6 = n gives a nearly linear plot.
The iterative method converges quite rapidly.

NUMERICAL RESULTS

On the basis of the foregoing analysis, a computer code was developed to de-
termine the coefficients of the stress functions. The procedure consisted of
selecting discrete stations around the boundary at which the prescribed boundary
conditions were specified. At each of these stations two equations expressing the
pertinent boundary conditions were written. The stations were roughly equally
spaced and their numbers so arranged that they gave a large number of equations,
more than twice the number of known coefficients in the stress function. The re-
sulting redundant system was solved by the least-squares collaction procedure.7 To
investigate the accuracy of the solution, some arbitrary points on the boundary
were examined for boundary conditions. For the range of the results presented
encompassing different material and geometrical configurations, a fairly high order
of accuracy was obtained even with the truncation of the series to -10 < n < + 10.

The practical motivation in carrying out this analysis was to develop a tool
to predict the complicated behavior of mechanical joints of laminated composites
typical of aircraft structural applications. The elastic properties of layers are
given in Table 1. The fabrication of laminates for a joint is usually done by



Table 1. ASSUMED MECHANICAL CONSTANTS OF stacking layers at different angles of

FIBER-REINFORCED MATERIALS inclination to the axis of the joint. The
Elastic Graphite Glass elastic properties of such a joint were
Constants Epoxy Epoxy estimated by doing the usual property trans-

L» 106 psi (GN/m2) 25.0 (172)  7.00 (48.2) formations.® A simple laminate theory was
6. X used to estimate the average elastic prop-
Eys 10° psi (GN/m?) 1.0 (6.89) 2.50 (17.2) erties of the laminate. This simple theory
G p» 10 psi (GN/m?) 0.7 (4.82) 1.20 (8.26) ignores the out-of-plane phenomena such as
interlaminar shear stresses, etc.

E

0.2 0.25

Figure 2 shows the general distribution of stresses on the fastener hole
periphery. In some cases the distribution of o, has the appearance of 'half cosine"
distribution. As is true in the anisotropic solutions, sizable variations can
take place in any direction depending upon the configuration of material and geom-
etries. An example of interest is given in Figure 2 for the curve marked with
squares, where e = 1.5 and the material is 0° glass epoxy. In Figure 2 where
e/R = 1.5, the method of solution places certain limitations on geometry for its
successful results. One limitation is due to the convergence of a Laurent series
for any awkward shape. For example, when either e/r or s/r is close to unity, the
boundary conditions are satisfied in a poor way. One more observation suggests
that for large values of e and s the solution gradually merges into the solution
for infinite plate. The method of solution was relatively faster in convergence
for periodic arrays than for the single pin case with the same number of terms
needed for a given level of accuracy in the satisfaction of the boundary con-
ditions. The bulk of the results tried were for the perfect fit case, i.e., pin
radius equals the hole radius. This method was demonstrated to be suitable for
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Figure 2. Radial stress distribution around fastener hole (D = 2).

8. HALPIN, J., ASHTON, J., and PETIT, P. Primer on Composite Materials Analysis. Technomic Publishing Co., 1969.



clearance fit cases, particularly when the difference between pin and hole
radius was small. One such example is shown in Figure 2 labeled with triangles,
applying to a pin radius of 0.99974.

It is customary to compute stress concentration factors, which in turn help
in estimating the stress peaks in comparison with the mean value of stresses.
Now we shall define the following parameters which are of practical interest to
the designers of composite materials.

Mean Net Section Tension, o,.. = P/2(s-D/2)t

NS

Mean Bearing Stress, GB = P/2Dt

Mean Shearout Stress, %so = P/2et

Further, these mean stresses can be divided by the applied load o

Al
kyg = 9yg/9y = s/ (s-D/2)

kB = oB/oA = 2s/D

kso - %so/cA = s/e

The following ratios defined as stress concentration factors are the ratio
of the peak stresses to the corresponding mean values.

/o

1

Ns = %6 = 90, r = R
1

KB = 0B)max/OA

K' =t ) /o

SO xy’max’ A’

i A

The quantity UB)max is defined as the compressive axial stress, i.e., maximum
compressive value of o, along the circular hole (r = R) in the contact region.
Similarly, Txy)max is the maximum shear at r = R. It was observed that the max-
imum Txy OCCUurs between polar angles of about 40° to 70° in the region of contact.
. Finally, the ratios of oglg = 90°s T = R opglpax, and Txy)max to o5 are of
interest. These are denoted as

KNs = 998 = 90, r = R/ONs
KB - 0B)max/cB
so Txy)max/Tso'

The following relations are apparent:

Kvs = knsKys



¥
KB - kBKB

=ik K
S0 SO SO
Solutions were computed for various geometries. The important parameters

for observation are e¢/D and s/D. The material was high-modulus graphite and the
fiber orientation was 0y * 45. The relevant elastic properties are shown in Table
1. The boundary condition was for the multiple pin case. The effect of varying
the geometry is shown in Figures 3 and 4. Figure 3 shows the effect of s/D on the
stress concentration factors Kyg, Kp, and Kgoy. These curves stop at the indicated
dotted lines because s cannot be less than D/2. Figure 3 also indicates the lin-
ear trends predicted by the infinite plate solution which shows the values of s/D
for which the finite plate solution merges with the infinite plane solution.
Figure 4 shows the variation of the stress ratios with normalized edge distance
(e/d) corresponding to s/D = 1. It is interesting to note that the curves fast
approach a constant level for e/D 2 2.
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Figure 5 shows some variations of oy at various cross sections. We have
observed that at a distance equal to twice the diameter away from the hole the
stresses become nearly uniform.

Figure 5. Variation of axial stress profile along x-axis,
0,+45° graphite epoxy, e/D = 2, s/D = 0.75, L/D = 4 (multipin).

CONCLUSIONS

The results show the complicated nature of the strain distributions in com-
posite joints. The Laurent series approach brings out the sensitive points in
the analytic model such as the normal stress distribution around the hole as well
as variation of the contact angle. The normal stress o, is often shown to be far
from the usual cosine distribution. The angle of contact is peculiar to the
elastic properties of the material at the aspect ratio in consideration. Theo-
retically, it is also dependent upon the load level, but for the elastic properties
of the composites considered and the magnitude of the load the joint would be
called upon to withstand, the contact angle can reasonably be considered constant.
The method gives good solutions in the range of geometries encountered in practical
engineering design situations. The solution scheme breaks down when the geometry
is too unsymmetrical about the center of the hole. When the geometry enlarges
about the center fairly uniformly in all directions, the solution merges with the
solution for infinite plate.

10
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